On-orbit defocus assessment of satellite cameras using neural network

Ph. Déliot & D. Léger JACIE 2011

retour sur innovation

INTRODUCTION

- Main purpose: Achieving the best focus adjustment
 - To obtain best image quality
 - to check the performances during commissioning period
- Defocus is the first optical parameter to correct
 - Defocus is due to launch vibrations, thermo-elastic effects, desorption...
 - Must be corrected before MTF assessment
- On-orbit conditions, during commissioning period
 - Method should be short in time
 - Method should have few programming constraints

OVERVIEW of defocus assessment methods

Reference method (SPOT):

Comparison with another on-board instrument

- Both cameras image the same landscape
- One is used as a reference
- Focusing mechanism of the other is moved
- The ratio of image spectra is calculated
- The vertex of a defocus model gives the best focus

Alternative method

Use of ground target: direct MTF assessment

These methods work well but require a reference instrument or a specific acquisition (target).

Main features of the Neural Network defocus assessment

- Neural Network (NN) defocus assessment method
 - √ This method does not require any reference (target, instrument, image, etc...)
 - √ It uses on-orbit images with no very "specific" landscapes
 - √ It measures the defocus in different parts of image and according to the row or column direction
 - $\sqrt{}$ It offers a redundancy with other methods
 - ! It needs several images covering a large range of focusing mechanism position (typically 10)

Neural Network defocus assessment

HYPOTHESIS

The modification of an image quality criterion (defocus) leads to measurable effects on the image.

MODELLING

Input: Samples, extracted from the image, can be represented by a vector composed of features that are sensitive to defocus.

Output: We use the value related to the focusing mechanism position.

IMPLEMENTATION

- → Two methods have been developed using feed forward neural network.
- → Many samples with high frequency content are needed from images taken at different focus mechanism positions to train the NN

Data and pre-processing needed for assessment

- Images at different focus mechanism positions
- Urban zones are preferred (high spatial frequency)
- Cutting-out from images to achieve 128x128 pixels images
- Computing of small image features

Examples of SPOT2 128x128 images (p0, p0+8, p0+12)

The most important step: defining features

 FFT mean calculated on different adjacent frequency intervals :

(1)
$$S_{mean_col}([f_{\min}; f_{\max}]) = \sum_{u \in [0; f_e]} \left[\sum_{v \in [f_{\min}; f_{\max}]} |FFT(image)(u, v)| \right]$$

- variogram for short inter-pixel distance (h = 1, 2, 3 and 4 pixels):

(2)
$$\gamma _col(h) = \frac{1}{2} \cdot E\left(\left|image_{i,j+h} - image_{i,j}\right|^2\right)$$

- Parameters a, b and c derived from the polynomial model (degree = 2) of the variogram in a logarithm representation

(3)
$$\gamma(h) = e^c h^b e^{a \ln(h)^2}$$

- moments of the image: mean, variance, kurtosis and skewness

variogram

Urban Rural

→ 21 features

Theses features can be designed for column and row direction

Feed forward Neural Networks: Multilayer Perceptron

Focus Assessment NN Method using symmetry

Hypothesis:

- 1] Defocusing effects are symmetric
- 2] We know roughly the zone where to find the Best Focus Plane (BFP)

How defining the BFP zone? Visual assessment or ...

determining the BFP zone using "bad extrapolation detection"

Procedure and test for defocus assessment

Procedure

- Applying the « Bad Extrapolation Detection » or visual assessment to determine the BFP zone
- 2. Applying the NN method using symmetric effects:

 Learning phase on one side of the BFP

 Testing phase on the other side
- 3. Determining uncertainty evaluation by repeating step 2

Tests made on SPOT2 (HRV2 camera) before de-orbiting:

- → We could use focusing mechanism over its whole range without endangered the mission
- → We used the reference method to compare the results with neural network method

Test on SPOT2: programming

Defocus assessment on SPOT2: reference method

- Calculation of the MTF ratio between cameras HRV2 and HRV1
 - Frequency domain [0.25 fe 0.35 fe]
- Defocus model fitted on measurement positions
 - p₀-12, p₀-8, p₀, p₀+4, p₀+8, p₀+12

→ Good fitting

- Best focus plane position
 - Column
- $p_{m} = 0.2$

Row

 $p_{m} = 1.3$

Defocus assessment on SPOT2: NN method

- We define 4 stripes on the image that correspond to the 4 sensor arrays
- We cut each zones into 128x128 images
- We calculate the associated features and place them into the pattern entry file of Neural Network (learning base or test base)

→ Best Focus assessment for each zones column-wise and row-wise

Results Comparison

Neural method		B1	B2	В3	B4				
	L	0.8	0.6	0.4	0.5				
	С	0.1	-0.3	-0.4	-0.1				

Reference method		B1	B2	В3	B4
	L	3.3	1.6	1.0	1.8
	С	1.1	0.3	0.2	0.6

Good agreement: mean deviation is 1 step, standard deviation for each method is about 1 step

Summary

- Neural Network Defocus Assessment Method is a good alternative method to standard one
- It is easy and fast to operate
- It does not need any reference nor specific images
- The efficiency of method was demonstrated on actual images of SPOT2 in severe operating conditions
- Good agreement was found with the reference method
- Uncertainty has been evaluated to be better than 1 focusing step
- → uncertainty on MTF~ 0.005

Thanks to CNES who founded a part of this work

On-orbit MTF assessment of satellite cameras, D.Léger, F. Viallefont, Ph. Déliot (ONERA) and C. Valorge (CNES), Post-Launch Calibration of Satellite Sensors, ISPRS 2004

